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The Chvátal-Gomory Procedure
A general procedure for generating valid inequalities for ILP

minimize
x

cT x subject to Ax ≤ b, x ≥ 0, x ∈ Zn

Let the columns of A ∈ Rm×n be denoted by {a1, a2, . . . an}
S = {x ∈ Zn

+ | Ax ≤ b} feasible set of ILP.
1 Choose nonnegative multipliers u ∈ Rm

+

2 uTAx ≤ uTb is a valid inequality:
∑
j∈N

ujajxj ≤ uTb.

3

∑
j∈N

buTajcxj ≤ uTb, since x ≥ 0.

4

∑
j∈N

buTajcxj ≤ buTbc is valid for S

since buTajcxj is an integer

Simply Amazing: This simple procedure suffices to generate
every valid inequality for an integer program
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Extension to MINLP

[Çezik and Iyengar, 2005]

This simple idea also extends to mixed 0-1 conic programming
minimize

x
f T x

subject to Ax �K b
xI ∈ {0, 1}p, 0 ≤ x ≤ U

K: Homogeneous, self-dual, proper, convex cone

x �K x ′ ⇔ (x − x ′) ∈ K
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Gomory On Cones

[Çezik and Iyengar, 2005]

LP: Kl = Rn
+, i.e. x ≥ 0 ... simplest cone

SOCP: Kq = {(x0, x̄) | x0 ≥ ‖x̄‖} ... ice-cream cone

SDP: Ks = {x = vec(X ) | X = XT ,X positive semi-definite}

Dual Cone: K∗ := {u | uT z ≥ 0 ∀z ∈ K}
Extension is clear from the following equivalence:

Az �K b ⇔ uTAz ≥ uTb ∀u �K∗ 0

Many classes of nonlinear inequalities can be represented as

Ax �Kq b or Ax �Ks b

... e.g. perspective function Pc(x , y), see Part III.
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Mixed-Integer Second-Order Cone Programs

Consider class of MISOCPs:

(MISOCP)


minimize

x
cT x

subject to x ∈ K
Ax = b, l ≤ x ≤ u
xi ∈ Z ∀i ∈ I .

x ∈ K product of k ≥ 1 cones K := K1 × . . .×Kk , defined as

Kj :=
{
xj = (xj0, x

T
j1)T ∈ R× Rnj−1 : ||xj1||2 ≤ xj0

}
where x = (xT1 , . . . , x

T
k )T

Cannot apply convex MINLP solvers directly:

Conic constraints not differentiable

Conic constraints cause NLP solvers to fail
... or converge slowly
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Outer Approximation for MISOCPs

For fixed integers, define SOCP subproblem:

(SOCP(x
(k)
I ))


minimize

x
cT x

subject to x ∈ K,
Ax = b, l ≤ x ≤ u

xI = x
(k)
I ,

and define outer approximations from subgradients of ‖xj1‖2 = xj0:

Ja(x̄) := {j : gj(x̄) = 0, x̄ 6= 0}, active different.

J0+(x̄ , s̄) := {j : x̄j = 0, s̄j0 > 0}, strongly active

J00(x̄ , s̄) := {j : x̄j = 0, s̄j0 = 0}, weakly active

... and derive OA master problem (gj(x̄) = ‖xj1‖2 − xj0)

8 / 62



Outer Approximation for MISOCPs

Define

X k := {x̄ : solved SOCP(x
(k)
I )} visited points

U := min{cT x̄ : x̄ ∈ X k} upper bound

MISOCP outer approximation problem: (MIP(X k))

minimize
x

cT x

subject to cT x ≤ U
Ax = b, l ≤ x ≤ u
0 ≥ −||x̄j1||xj0 + x̄Tj1xj1, ∀j ∈ Ja(x̄), x̄ ∈ X k ,

0 ≥ −xj0 − 1
s̄j0
s̄Tj1xj1, ∀j ∈ J0+(x̄ , s̄ ), x̄ ∈ X k ,

0 ≥ −xj0, ∀j ∈ J00(x̄ , s̄), x̄ ∈ X k ,
xi ∈ Z, ∀i ∈ I .

Convergence, see [Drewes and Ulbrich, 2012]
... Exercise: Is this OA approach finite?
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Gomory Cuts for MISOCP

Theorem ([Drewes, 2009])

Continuous SOCP & dual satisfy Slater’s CQ & lI ≥ 0.

x̄ with x̄I /∈ Zp solution of SOCP(x
(k)
I ), (s̄, ȳ) dual.

Then following cut is valid for MISOCP,

d(AT
I (ȳ −∆y)s̄I eT sI ≥ d(ȳ −∆y)Tbe,

where ∆y solves (
−AC

AI

)
∆y =

(
cC
0

)
.

If (ȳ −∆y)Tb /∈ Z, then cut off x̄.
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Example of Gomory for MISOCP

Example:

min
x
−x2

s.t. −3x2 + x3 ≤ 0
2x2 + x3 ≤ 3
0 ≤ x1, x2 ≤ 3
x1 ≥ ||(x2, x3)T ||2
x1, x2 ∈ Z,

relaxed solution: (3, 12
5 ,−

9
5 ).

The Gomory cut x2 ≤ 2
0

1

2

3

-3

-2

-1

0

1

2

30

1

2

3

4

x1

x2

x3

x1
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Other Work on MISOCP

Related work on MISOCP (simplest generalization of MILP)

Lift-and-project for MISOCP [Stubbs and Mehrotra, 1999]
and [Drewes, 2009]

MIR cuts for MISOCP or polyhedral SOCP
[Atamtürk and Narayanan, 2010]
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Challenges of Nonconvex MINLP

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

... now drop assumption that f (x) and c(x) are convex

Challenges of nonconvex MINLP

Objective function f (x) can have many local minimizers

Continuous relaxation of constraint set{
x |c(x) ≤ 0, x ∈ X

}
... can be disjoint, may have no interior
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Challenges of Nonconvex MINLP

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Nonconvexity arise naturally

Take nonlinear, convex c(x) and consider l ≤ c(x) ≤ u
⇒ nonconvex feasible region, e.g. {1 ≤ x2

1 + x2
2 ≤ 2}

Nonlinear equations arise naturally in power grid applications
e.g. nonlinear (AC) power flow model:

F (Uk ,Ul , θk , θl) := bklUkUl sin(θk − θl) + gklU
2
k

−gklUkUl cos(θk − θl)

Nonlinear equations also arise naturally in core-reloading,
gas- and water-networks, and many more applications
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Challenges of Nonconvex MINLP

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Definition (Convexity)

A function f : Rn → R is convex, iff ∀x (0), x (1) ∈ Rn we have:

f (x (1)) ≥ f (x (0)) + (x (1) − x (0))T∇f (0)

For f (x), c(x) convex we get global convergence guarantee:

NLP relaxations (xi ∈ R ∀ i ∈ I ) are convex
⇒ First-order (KKT) conditions are necessary & sufficient
⇒ NLP solvers find global min at every node of BnB tree

BnB, OA, Benders, ECP. etc. find guaranteed global solution
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Challenges of Nonconvex MINLP

Mixed-Integer Nonlinear Program (MINLP)

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Definition (Convexity)

A function f : Rn → R is convex, iff ∀x (0), x (1) ∈ Rn we have:

f (x (1)) ≥ f (x (0)) + (x (1) − x (0))T∇f (0)

For f (x), c(x) nonconvex, NLP works without guarantees:

NLP solvers find stationary points
⇒ no distinction between local/global minimum

solution from NLP may not even be a local minimum
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Challenges of Nonconvex MINLP

Definition (Local Minimum)

A point x∗ is a local minimum of

minimize
x

f (x) subject to x ∈ F

iff ∃ N (x∗) such that f (x) ≥ f (x∗) for all x ∈ N (x∗) ∩ F

Nonconvex f (x) with three local and
one global min
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Challenges of Nonconvex MINLP

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Definition (Global Minimum)

A point x∗ is a global minimum of

minimize
x

f (x) subject to x ∈ F

iff f (x) ≥ f (x∗) forall x ∈ F

Remarks:

NLP solvers are not guaranteed to find even local minima
... though they work remarkably well in practice!

Global optimization is NP-hard (includes MIP: (1− xi )xi ≤ 0)

Finding a global min is difficult ... proving it is really hard
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General Approach to Nonconvex MINLP

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Use our old MIP trick: convex relaxation!

Relax integrality as before: xi ∈ R ∀ i ∈ I

Also need to relax f (x) and constraints c(x) ... new aspect

Ensure relaxation is tractable: e.g. convex

21 / 62



General Approach to Nonconvex MINLP

minimize
x

f (x) subject to c(x) ≤ 0, x ∈ X , xi ∈ Z ∀ i ∈ I

Relaxation provides lower bound, but solution infeasible in MINLP

Need constraint enforcement to guarantee convergence

Branching reduces area of relaxation

Refinement tightens the relaxation over subdomain
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Piecewise Linear Approximations for Univariate Functions

Consider univariate functions
gi : R → R and multivariate
separable function

g(x) =
K∑
i=1

gi (xi )

Get approximation of g(x) from
approximations of gi (xi )

Two-step algorithm

Obtain piecewise linear approximation

Solve approx. problem as MILP & refine if necessary
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Piecewise Linear Approximations for Univariate Functions

Given g : [l , u]→ R, find piecewise linear ĝ : [l , u] with
ĝ(x) ≈ g(x) for all x ∈ [l , u].

Consider d segments & breakpoints l =: b0 < b1 < · · · < bd := u
and function values yk = ĝ(bk) = g(bk), for k = 0, 1, . . . , d

ĝ(x) = yk−1+

(
yk − yk−1

bk − bk−1

)
(x−bk−1), x ∈ [bk−1, bk ], ∀k = 1, . . . , d

Alternative definition: let mk = (yk − yk−1)/(bk − bk−1) slope of
line segment then ak = yk −mkbk−1 is y -intercept

⇒ ĝ(x) = ak + mkx , x ∈ [bk−1, bk ], ∀k = 1, . . . , d .

... now replace g(x) by ĝ(x) in MINLP
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Piecewise Linear Approximations for Univariate Functions

Two competing aims:

1 min ‖g(x)− ĝ(x)‖[l ,u]

2 min # breakpoints = d

Balance approximation error
and solution time

Simplest approach: equidistant points ... better choice possible!

yk 6= g(bk) can give better approximation

... we can formulate piecewise linear as MILP!
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MILP Model (1) of Piecewise Linear Approximations
Given piecewise linear approximation of univariate g(x) : R→ R

g(x) ' ĝ(x) = ak + mkx , x ∈ [bk−1, bk ], ∀k = 1, . . . , d

Approach I: multiple choice model ⇒ MILP

1 Introduce binary variables zk , k = 1, . . . , d ,
where zk = 1 if x ∈ [bk−1, bk ]; otherwise zk = 0

2 Introduce variable wk : x = wk in interval [bk−1, bk ]

3 Add model equations to MINLP:

d∑
k=1

wk = x ,
d∑

k=1

(mkwk + akzk) = y ,
d∑

k=1

zk = 1

bk−1zk ≤ wk ≤ bkzk , zk ∈ {0, 1}, k = 1, . . . , d

4 Replace g(x) by y ... in MINLP model.

See [Jeroslow and Lowe, 1984] best for # breakpoints. d ≤ 16
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MILP Model (2) of Piecewise Linear Approximations
Given piecewise linear approximation of univariate g(x) : R→ R

g(x) ' ĝ(x) = ak + mkx , x ∈ [bk−1, bk ], ∀k = 1, . . . , d

Approach 2: convex combination model ⇒ MILP
1 Introduce binary variables zk = 1 iff x ∈ [bk−1, bk ]
2 Introduce continuous variable λk convex combination
3 Add model equations to MINLP ... related to SOS-2

d∑
k=0

λkb
k = x ,

d∑
k=0

λky
k = y ,

d∑
j=k

λj ≤
d∑

j=k

zj ,
k−1∑
j=0

λj ≤
k∑
j=1

zj , k = 1, . . . , d ,

d∑
k=0

λk = 1
d∑

k=1

zk = 1,

λk ≥ 0, k = 0, 1, . . . , d zk ∈ {0, 1}, k = 1, . . . , d .
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SOS-2 Model of Piecewise Linear Approximations
Given piecewise linear approximation of univariate g(x) : R→ R

g(x) ' ĝ(x) = ak + mkx , x ∈ [bk−1, bk ], ∀k = 1, . . . , d

Model piecewise linear as SOS-2 without additional variables!

Definition (SOS-2 Sets)

Set of variables λ = (λ0, λ1, . . . , λd) is SOS-2, iff at most two
adjacent λi nonzero.

Gives formulation (related to MILP Model (2) above)

d∑
k=0

λkb
k = x ,

d∑
k=0

λky
k = y ,

d∑
k=0

λk = 1,

λk ≥ 0, k = 0, 1, . . . , d (λ0, λ1, . . . , λd) is SOS2.

Implemented in most MILP solvers
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SOS-2 Model of Piecewise Linear Approximations

How can we branch on SOS-2 set?

d∑
k=0

λkb
k = x ,

d∑
k=0

λky
k = y ,

d∑
k=0

λk = 1,

and λk ≥ 0, k = 0, 1, . . . , d (λ0, λ1, . . . , λd) is SOS2

If solution λ̂ of relaxation violates SOS-2 condition the

1 Select index k ∈ {1, . . . , d} such that:
∃j1 < k with λj1 > 0 and ∃j2 > k with λj2 > 0

2 Create two branches:
1 Branch 1 set λj = 0 for all j < k
2 Branch 2 set λj = 0 for all j > k

See [Beale and Tomlin, 1970]; generalizes to multivariate g(x)
... more models in paper
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Piecewise Linear Approximations for Multivariate Functions

SOS-2 generalizes to multiple dimensions [Beale and Tomlin, 1970]

Multivariate g : Rd → R
Piecewise linear approx. of g(x)

Choose breakpoints bk ,
k = 1, . . . , q

Partition ⊗d
i=1[li , ui ] into simplices

Approximation ĝ(x) with λk ≥ 0

ĝ(x) =

q∑
k=1

λkg(bk), x =

q∑
k=1

λkb
k , 1 =

q∑
k=1

λk

Definition (SOS-{d + 1} Set Condition)

The set (λ1, . . . , λq) satisfies SOS-{d + 1} condition, iff at most
d + 1 λk non-zero on single simplex
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Piecewise Linear Approximations for Multivariate Functions
Example: Approximation of 2D function u = g(v ,w)

Triangularization of [vL, vU ]× [wL,wU ] domain

1 vL = v1 < . . . < vk = vU
2 wL = w1 < . . . < wl = wU

3 function uij := g(vi ,wj)

4 λij weight of vertex (i , j)

v =
k∑

i=1

λijvi , w =
l∑

j=1

λijwj , u =
k∑

i=1

l∑
j=1

λijuij , λij ≥ 0

1 =
∑
λij is SOS3 . . .
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Piecewise Linear Approximations for Multivariate Functions

SOS3:
∑
λij = 1 & set condition holds

1 v =
∑
λijvi ... convex combinations

2 w =
∑
λijwj

3 u =
∑
λijuij

{λ11, . . . , λkl} satisfies set condition

⇔ ∃ triangle ∆ : {(i , j) : λij > 0} ⊂ ∆ v

w

violates set condn

i.e. nonzeros in single triangle ∆
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Piecewise Linear Approximations for Multivariate Functions

Branching on SOS3 when λ violates set condition

compute centers:
v̂ =

∑
λijvi &

ŵ =
∑
λijwi

find s, t such that
vs ≤ v̂ < vs+1 &
wt ≤ ŵ < wt+1

branch on v or w

v

w

violates set condn

Branching on SOS3
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∑
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∑
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Piecewise Linear Approximations for Multivariate Functions

Branching on SOS3 when λ violates set condition

compute centers:
v̂ =

∑
λijvi &

ŵ =
∑
λijwi

find s, t such that
vs ≤ v̂ < vs+1 &
wt ≤ ŵ < wt+1

branch on v or w

w

v

= center of gravity

B

T

Branching on SOS3

horizontal branching:
∑
T

λij = 1
∑
B

λij = 1

35 / 62



Piecewise Linear Approximations for Multivariate Functions

Pitfall: Exponential Complexity of SOS

Approximate g(x) for x ∈ Rn

Use p breakpoints in each dimension
⇒ ⇒ pn SOS-variables λi

e.g. expression for real power has n = 8 variables ... impractical

... use decomposition of functions, see [Kesavan et al., 2004]
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Remedy: Decomposition of Nonlinear Functions

SOS-approximation needs pn SOS-variables λk

Idea: decompose h(x) into simpler functions:

wj = xj j = 1, . . . , s,
ws+j = gj(wj1{,wj2}) j = 1, . . . ,K ,
h(x , y) = ws+t+K ,

where gj are univariate or bivariate and j1, j2 < s + t + j
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Remedy: Decomposition of Nonlinear Functions

Consider

g(x1, x2, x3, x4) = ax2
2 + bx2x3 cos(x4)− x1

where a and b constants.

wj = xj j = 1, . . . ,

w5 = w2
2

w6 = w2w3

w7 = cos(w4)

w8 = w6w7

g = aw5 + bw8 − w1

Decomposition not unique: e.g. w6 = cos(w4) etc.
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Remedy: Decomposition of Nonlinear Functions

Example: Expression for active power

Pij = ν2
i (yij cos(ζij) + gij)− νiνjyij sin(ζij + θi − θj)

Simple functions:

ν2
i

cos(ζij)

sin(wj1), where wj1 = ζij + θi − θj
5 bilinear terms like νiνj

⇒ need only 5p2 + 3p SOS variables, λ ... much smaller p8
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Decomposition Nonconvex MINLP

Consider MINLP in format

(P)


minimize

x
g0(x),

subject to gi (x) ≤ 0, i = 1, ..,m,
x ∈ X , xI ∈ Zp

... and assume that it is factorable

Definition (Factorable MINLP)

A MINLP is factorable if every function can be written as a sum of
products of unary functions.
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Decomposition Nonconvex MINLP

(P)
{

min
x

g0(x), s.t. gi (x) ≤ 0, i = 1, ..,m, x ∈ X , xI ∈ Zp

Introduce variables w , write MINLP (P) equivalently as

(D)



minimize
x ,w

w0,K0

subject to wij = xj ∀i , j
wi ,n+j = gij(wi ,j1{,wi ,j2}) ∀i , j
wi ,n+Ki

≤ 0 i = 1, . . . ,m
x ∈ X , xi ∈ Z ∀i ∈ I

. . . equivalent to MINLP (P) ... related to automatic differentiation
where gij(wi ,j1{,wi ,j2}) univariate/bivariate component of ci (x)

Basis of general approach to nonconvex MINLP!
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Example: Decomposition of Nonlinear Functions

Example: Expression for active power is factorable

Pij = ν2
i (yij cos(ζij) + gij)− νiνjyij sin(ζij + θi − θj)

Get factorable form:

w11 = νi , w21 = νj , w31 = ζij
w12 = w2

11 w22 = w11w21 w32 = cos(w31)
w33 = cos(w31 + θi − θj), w34 = w33w22, w35 = yijw32 + gij
w36 = w35w12

BARON & Couenne solvers use factorable format.
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SOS Approximations Become Infeasible

SOS approx infeasible

sin(x) = 0
−0.35 (x − π)2 − 0.3 = 0

. . . observed infeasible SOS on some power-grid examples!
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Remedy: Piecewise Polyhedral Envelopes

Idea: Outer approximation by piecewise polyhedral envelopes

Univariate wg = g(w) represented by envelope:∑
k∈I

λk (g(wk)− Lk) ≤ wg ≤
∑
k∈I

λk (g(wk) + Uk )
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Remedy: Piecewise Polyhedral Envelopes

Obtain bound Lk by solving

Lk = max
w∈[wk ,wk+1],λk+λk+1=1

(
0, λkg(wk) + λk+1g(wk+1)− g(w)

)
. . . similar for Uk

Bounds Lk ,Uk pre-computed on [wk ,wk+1], e.g. g(w) = w2:

Lk = (wk+1 − wk)2/4, Uk = 0

See Emilie’s thesis for other functions ...
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Piecewise Polyhedral Envelopes for g = x y

Theorem: Every (x , y , xy) with lx ≤ x ≤ ux and ly ≤ y ≤ uy is
unique convex combination of (lx , ly , lx ly ), (lx , uy , lxuy ),
(ux , ly , ux ly ) and (ux , uy , uxuy ), i.e. ∃λi ≥ 0, i = 1, . . . , 4:

x
y
xy
1

 =


lx lx ux ux
ly uy ly uy
lx ly lxuy ux ly uxuy
1 1 1 1



λ1

λ2

λ3

λ4


Implies Lk = Uk = 0, and equality (tighter relaxation):

wxy =
∑

(i ,j)∈I

λijxiyj
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Piecewise Envelope Problem

Proposition: (E ) is an outer approximation of (D) and hence (P).

(E )



minimize
x ,w ,λ

w0,K0

subject to wij = xj ,

xj =
∑
k∈Ij

λjkxjk , 1 =
∑
k∈Ij

λjk

wi ,n+j ≥
∑
k∈Iij

λkij

(
gij(w

k
i ,j1{,w

k
i ,j2})− Lijk

)
wi ,n+j ≤

∑
k∈Iij

λkij

(
gij(w

k
i ,j1{,w

k
i ,j2}) + Uijk

)
wi ,s+Ki

= 0
x ∈ X , xIZp, and w ∈W ,

where W deduced from x bounds;
and blue part replaces wi ,n+j = gij(w

k
i ,j1
{,wk

i ,j2
})
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Piecewise Envelope Problem: Illustration

SOS Outer Approximation Convex Hull
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Branch-and-Refine: Outline

Classical Branch-and-Bound:
Solve envelope problem (E ) branch on SOS-condition or xI ∈ Zp

⇒ large discretization error or large number of λk variables

Idea: Instead refine discretization after branching:

tighten envelope as we go down tree: refine

exploit exactness of bilinear terms w1w2

better numerical results
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Branch-and-Refine: Branching

1D SOS 2D SOS

Illustration of branching and refinement
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Branch-and-Refine: Fathoming Rules

Also solve NLP(Xk):
zNLPk

:= minimize
x

g0(x)

subject to gi (x) = 0, i = 1, ..,m
x ∈ Xk ,

. . . upper bound on node (Xk).

Fathoming Rules:

1 infeasible LP relaxation

2 NLP(Xk) solution same as LP(Xk) relaxation

3 LP relaxation dominated by incumbent
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Branch-and-Refine: Algorithm

set U =∞, k = 1 & put LP(Xk) on stack
while stack is not empty

solve LP(Xk) ... solution xk

if LP(Xk) infeasible or zLPk
≥ U − ε then

fathom node (case 1. or 3.)
else

solve NLP(Xk) ... solution x̂k

if zNLPk
< U − ε & x̂kI integer then

update U := zNLPk
& incumbent x∗ := x̂

if |zNLPk
− zLPk

| ≤ ε then
fathom node (case 2.)

else
branch creating two new LPs

Theorem: If x ∈ X is bounded ⇒ get ε-optimal solution.
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Test Problems (Generic)

prob #var #cons #var OA #cons OA #sets λ #disc

pb0 4 2 44 32 6 1
pb1 4 2 44 32 6 1
pb2 6 2 41 30 5 1
pb3 6 2 41 30 5 1
pb4 12 4 97 71 11 2
pb5 12 4 97 71 11 2
pb6 12 4 143 97 19 3
pb7 12 4 143 97 19 3
pb8 12 4 119 77 14 2
pb9 12 4 119 77 14 2
pb10 10 4 111 72 13 2
pb11 10 4 111 72 13 2
pb12 24 8 275 187 40 6
pb13 24 8 275 187 40 6
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Test Problems (Tertiary Voltage Control)

prob #var #cons #var OA #cons OA #sets λ #disc

TVC1 16 9 269 200 39 6
TVC2 18 9 275 204 40 6
TVC3 27 15 422 315 61 9
TVC4 27 15 422 315 61 9
TVC5 37 21 602 449 87 13
TVC6 38 21 635 472 92 14

... moderately sized problems

Complexity of nonconvex MINLPs depends on
# terms in computational graph ' #sets λ

56 / 62



Do We Need Global Solvers?

Comparison with NLP solvers
solver # Problems Solved # Global Solutions

BnR 20 20
Filter 12 8
IPOPT 17 14
KNITRO 17 13

Comparison with MINLP solvers
solver # Problems Solved # Global Solutions

BnR 20 20
BONMIN 15 11
MINLPBB 11 9
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Implementation Details & Tricks

LPs solved with CPLEX

Decomposition hand-coded by Emilie (yikes!)

exploit common sub-expressions
Can be automated, similar to automatic differentiation (AD)
Modern global solvers do this automatically

NLPs solved with FilterSQP (AD for gradients/Hessian)

Propagate & strengthen bounds through computational graph

Pre-solve (LP) to reduce range of variables (like BARON)

Adaptive presolve is best: tail-off factor

Pseudo-cost branching (generalized to nonconvex)

Best-estimate node selection (generalized to nonconvex)
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Numerical Results (# LPs solved)

prob basic +presolve +var-select +node-select

pb0 63 63 68 68
pb1 133 131 79 68
pb2 2115 3237 194 260
pb3 135 197 121 97
pb4 15389 11388 120 120
pb5 3009 257 145 145
pb6 65800 6145 348 292
pb7 377 1353 1235 1121
pb8 fail 198817 263 241
pb9 62149 33668 442 442
pb10 113846 51816 205 197
pb11 3806 7349 558 258
pb12 fail 33407 1503 1056
pb13 fail 8093 17388 3885
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Numerical Results (# LPs solved)

prob basic +presolve +var-select +node-select

TVC1 108861 40446 7756 8031
TVC2 fail 72270 5792 5547
TVC3 62045 861 627 627
TVC4 fail 38792 1396 1582
TVC5 fail 7369 5619 4338
TVC6 fail 12131 6096 5503
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Summary and Student Discussion

Key Points

Nonconvex functions make MINLPs much harder

General approach based on underestimators

Piecewise linear functions & factorable functions

Short Presentations by Students Volunteers:

Sebastien Mathieu, University of Liège

Azamat Shakhimardanov, KU Leuven

Lin Zhang, KU Leuven

Yansong Guo, KU Leuven

David Jalúvka, KU Leuven

Joly Arnaud, University of Liège

Damien Gerard, University of Liège

Office Hours: Wednesday after the course in room 115
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